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n-Beam Lattice Images. 
II. Methods of Calculation 

BY D. F. LYNCH 

Division of Chemical Physics, CSIRO, P. O. Box 160, Clayton, Victoria, Australia, 3168 

AND M.A. O'KEEFE 

Division of Tribophysics, CSIRO, University of Melbourne, Victoria, Australia, 3052 

(Received 23 March 1972) 

The calculation of amplitudes and phases of beams of electrons diffracted from thin (_  100 rim) crystals 
of W4Nb26Ov7 is described. These diffraction data are used to compute 11-beam 00l electron microscope 
lattice images and the effects of instrument aberrations are considered. Several approximations are com- 
pared with a more exact 435-beam, two-dimensional computation, and with experimental diffraction 
data and lattice images. Finally, the projected charge density approximation to image contrast is 
evaluated. 

1. Introduction 

In the first paper in this series (Allpress, Hewat, Moo- 
die & Sanders, 1972) (referred to as I hereafter), an 
account of the theory of electron scattering and imaging 
is given. The agreement obtained between experimental 
and calculated images is shown to be quite good when 
applied to 11-beam, 00l images from the complex oxide 
W4Nb26077. In this paper, calculations which produce 
these results are described and ways given to incorpor- 

ate instrumental effects in the calculation. The effects 
include: 

(i) Spherical aberration 
(ii) Chromatic aberration 

(iii) Beam divergence. 
Methods of calculation of electron scattering pro- 

blems have been described elsewhere (Cowley & 
Moodie, 1957; Goodman & Moodie, 1972). These use 
both multislice and phase-grating methods to calculate 
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diffraction amplitudes and phases• The method of 
Cowley & Moodie (1960) can be used to calculate 
electron images using these amplitudes and phases. 
Methods of doing this were first developed in this 
laboratory by Hewat (1970). Previous calculations 
(Goodman & Lehmpfuhl, 1967; Johnson, 1968; Lynch, 
1971) were carried out on substances having small unit 
cells with only a few atoms per unit cell. We have car- 
ried out calculations for the oxide W4Nb26077 which 
has a large unit cell containing 214 atoms and gives 
lattice fringes with periodicities of the order of 2.6 nm. 
Due to this large unit-cell size, it was necessary to re- 
evaluate the types of approximations which can be 
made in the n-beam scattering calculations, compared 
with those which had previously been made. 

In this communication none of the calculations made 
has included effects of inelastic scattering. Such 
effects would be represented by means of phenomeno- 
logical absorption parameters. However the term 
'weak-beam absorption' is used in the restricted sense 
of low normalization of the calculated results occurring 
due to the inclusion of an insufficient number of dyna- 
mically coupled reflexions from the thin phase grating• 

The most exact calculation which could be made was 
a two-dimensional multislice calculation involving 
coupling of sufficient reflexions in the zone of interest. 
This zone is defined as that whose axis is most nearly 
parallel to the illuminating beam. In the case of the 
oxide considered in these calculations, 435 reflexions 
gave adequate normalization. 
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Fig. 1. (a) Idealized model of the structure of W4Nb26077, viewed down [010]. Each square represents an oetahedron, the 
lighter and darker squares being centred on parallel planes 0.19 nm apart. The octahedra form blocks of 4 x 3 and 4 x 4 
by sharing corners, and these blocks are joined to one another by sharing octahedral edges, along the crystallographic shear 
planes (arrowed). The circles represent tungsten atoms in tetrahedral coordination. (b) Projected potentials of WgNb26077. 
The half-tone picture is the projection of the structure down the b axis. The projected potential tp~(x,y) has been calculated 
on a 60 x 60 net. Any projected potential less than 20 V produces no contrast in the display. The darkest areas are those greater 
than 105 V. The upper graph is then the one-dimensional projection ~p(x) onto the c axis. The large peaks at approximately 
¼c and ¼c are at the projected positions of the tungsten atoms occupying tetrahedral sites in the crystallographic shear planes. 
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The systematics approximation (Hoerni, 1956) that 
was used considers dynamical coupling along a system- 
atics line of reflexions in the zone only. The system- 
atics multislice (Goodman & Lehmpfuhl, 1967) was 
thus a one-dimensional approximation to the two- 
dimensional multislice. Two ways of obtaining a 
systematics approximation are to :- 

(i) multislice from a one-dimensional phase grating; 
and 

(ii) multislice with a systematics line from a two- 
dimensional phase grating. 

The phase-grating approximation (Cowley & Moo- 
die, 1960) is of interest in two ways. Firstly, to deter- 
mine a suitable phase grating for use in the multislice 
operation, and secondly, to use a phase grating as an 
approximation to determine the electron amplitudes 
and phases. 

A kinematic approximation was also tested. In this 
approximation, the central beam amplitude was set at 
unity and phase set at 0. The amplitudes of the scat- 
tered beams, phase set at hi2, were given by multiplica- 
tion of the shape transform with scattering amplitude. 

The validity of the charge-density approximation 
(Cowley & Moodie, 1960, and also I) was tested by 
calculating this directly for the crystal using the same 
number of Fourier coefficients as the number of beams 
allowed through the aperture to form an image in the 
lattice-image calculation. 

These approximations were checked in two ways; (i) 
by comparison with the most accurate two-dimensional 
multislice and (ii) by comparison with experimental dif- 
fraction intensities and lattice images. 

2. The object 

The oxide considered was W4Nbz6OT7. The structure 
has been determined by X-ray measurements (Anders- 
son, Mumme & Wadsley, 1966). The unit cell constants 
are a=2.974 nm, b=0.3824 nm, c=2.597 nm, and 
fl= 1.611 rad, and the structure (as seen when viewed 
down the short b axis) is shown in Fig. l(a). 

Structure amplitudes were calculated from the pub- 
lished atom positions and from electron form-factor 
curves derived from published X-ray form factors 
(Cromer & Waber, 1965) using the Mott formula 
(Mott, 1930). The calculated structure amplitudes were 
summed to obtain the projected potential distributions 
across the unit cell. A projection parallel to the short 
b axis was used. These projected potential distributions 
were used as the starting point for the n-beam scat- 
tering calculations. Representations of the one-dimen- 
sional and two-dimensional projected potentials are 
shown in Fig. l(b). Because the structure has 214 atoms 
in the unit cell, care must be taken to ensure that a 
sufficient number of structure factors are used in order 
to define the shapes of individual atoms. It was found 
that up to 120 orders were sufficient in the systematics 

case, which corresponded to defining the systematics 
potential to 1/240th of the unit cell. In the two-dimen- 
sional case, 30 orders on both axes were taken, defining 
the potential on a 60 x 60 nct. 

In Fig. 2 is shown a flow sheet demonstrating the 
various procedures which may be used to calculate 
image profiles in an electron microscope. All of the 
indicated paths have been explored in the calculation 
of images presented in the report. There is no inherent 
difficulty in extending the present calculations to the 
calculation of two-dimensional lattice images. Except 
for the charge-density approximation all the procedures 
require a good estimation of the crystal structure in 
order to calculate the image. In the charge-density case 
the image can be used to determine the coarse structure 
of the object. 
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Fig.2. A flow chart which illustrates the procedures that may 
be used to calculate lattice images. P. G. is the abbreviation 
for phase grating. The most time-consuming part of the cal- 
culation is the multislice operation. This is avoided in the 
projected charge density calculation, which evaluates a 
truncated projected charge density by a Fourier summation 
over only those beams which contribute to the formation of 
the image. The image approximates to this summation for 
certain ranges of crystal thickness and defect of focus. The 
effects of changes in angle of incidence on the P.G. results 
were not investigated as the angles involved were small 
(<0.1 rad). 
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Fig. 3. Beam intensities as a function of  crystal thickness for the 001 reflexions, I= 1 to 7. (a) Systematics calculation from a one- 
dimensional phase grating. (b) Kinematic calculation. The 001 is too weak, and the 000 too strong to appear on scale. (c) Two- 
dimensional multislice calculation (435 reflexions) computed to a 60 nm thickness only. The 000 reflexion is too intense to appear 
on scale. (d) One-dimensional thick-phase-grating calculation. (e) Two-dimensional multislice calculation (105 reflexions). Note 
the change in vertical scale made necessary by the heavy weak-beam absorption. ( f )  Systematic calculation from a two-dimen- 
sional phase grating. Note that again there has been heavy weak-beam absorption. In (a), (d), (e) and ( f )  the 006 is too weak 
to appear on scale. 
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3. Scattering calculations 

3.1 The thin phase grating 
The first step in calculation of dynamic phases and 

amplitudes by multislice methods is to calculate the 
thin phase grating which is the transmission function 
for a thin slice of the crystal. 

The thin phase grating is defined as: 

q(x,y)=exp {ia~op(x,y) . Az },  

rc 2 
where tr = 2W " 1 + (1 _fl2)1/2 , 2 is the relativistic elec- 

tron wave length, W is the acceleration potential in 
volts, ~Op(X,y) is the projected potential, and Az is the 
slice thickness. It is then usual to deal with the Fourier 
transform of q, 

Q(h,l)= ~ oq(X,y ) exp 2rci h x +l dxdy.  

The number of reflexions in the phase grating must 
be sufficiently great that the sum of intensities is as 
close as possible to the incident wave intensity. In the 
one-dimensional case, the phase grating was deter- 
mined to the 14th order (29 reflexions) and in the two- 
dimensional case also to the 14th order (435 reflexions). 
In the one-dimensional case, normalization was very 
good at 0.99998 and in the two-dimensional case 
normalization was 0-9998. There are several conditions 
which are imposed on the choice of the magnitude of 
Az. Because of the use of Fourier transformations, if 
Az is so large that exp (ia~opAz) has more turning points 
than the original structure, the Fourier transformation 
requires many more sampling points. Secondly, Az 
must be sufficiently small so that the propagation 
function used in the multislice calculation does not 
give pseudo-upper-layer-line reinforcement on any of 
the reflexions propagated. In this case Az was limited 
to 0.5 nm in the one-dimensional case and 0.2 nm in the 
two-dimensional case. Thus, in both cases, quite 
satisfactory thin phase grating calculations could be 
made - adequate both as an input to one-dimensional 
and two-dimensional multislice calculations and for 
phase grating calculations. 

3.2 Multislice calculation 
Three types of multislice calculations were made 

(Fig. 2). These can be arranged in order of time of cal- 
culation as (i) systematics multislice and (ii) system- 
atics from a two-dimensional phase grating, taking 
equal time, and (iii) full two-dimensional multislice 
calculation. The multislice operation is the most time- 
consuming part of the calculation, since the time of 
calculation is proportional to N 2, where N is the num- 
ber of reflexions. The systematics approximation, 
which greatly reduces the number of beams to be 
multisliced, gives a large gain in calculation speed. 
The 435-beam multislice calculation took approxi- 

mately half a minute per slice on a CDC 3600 com- 
puter. 

The propagation function in the multislice operation 
defines the angle of incidence for that particular cal- 
culation. Calculations were carried out over the range 
of angles of incidence corresponding to the measured 
cone of convergence for a JEM 100B, i.e. a semi-angle 
of 6.4 x 10 - 4  rad. This cone was sampled at 11 points, 
the variation in diffracted wave amplitude and phase 
being sufficiently slow across this angle so that no 
finer sampling was needed. 

The multislice calculation took the standard form 
which gives the scattered wave amplitudes and phases 
from the nth slice in terms of the ( n -  1)th slice output, 
modified by the propagation function: 

U,(h,k)=[U,_1(h,k) . P(h,k)] • Q(h,k) 

where 

• denotes convolution, 
Q(h,k) is the Fourier coefficient for a thin phase 

grating, 
U,(h,k) is the wave amplitude and phase from the 

nth slice, 

I I I I I 
(,:,) 
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Fig.4. Phase of scattered beams as a function of crystal thick- 
ness. The vertical scale is in units of n, the horizontal lines 
at 0 and + 0.5rr are the phase variation to be expected from 
a kinematic calculation. (a) Two-dimensional multislice 
calculation (435 reflexions). (b) Systematics calculation from 
a one-dimensional phase grating. 
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and 

P(h, k) is the propagation function. 
P(h ,k )=exp  {2zci((h,k)dz} , 

where Az is the slice thickness 
and ((h, k) is the excitation error for (h, k)th reflexion 
for a particular angle of incidence. 

The number of beams in a multislice calculation 
must be such that the sum of intensities of beams at the 
final thickness should be very close to 1. In the one- 
dimensional case, 29 reflexions were sufficient to 
maintain a normalization of 0.96 at 100 nm and the 
two-dimensional case was only marginally satisfactory 
for 435 beams, the normalization being 0.72 at 60 nm. 

A two-dimensional multislice calculation was also 
carried out for 105 reflexions. In this case, there was 
heavy weak-beam absorption such that, at a thickness 
of 30 rim, the normalization was 0.44, at 60 nm it was 
0.17, and at 100 nm it was 0.05. 

Because the short axis (0.3824 nm) of the crystal was 
normal to the plane of the slice, it was felt that upper 
layer line effects could be neglected in the most exact 
calculation. This short axis corresponds to an upper 
layer spacing of approximately 2.5 nm -1. The largest 
excitation error in any of the arrays multisliced was 
- 0 . 5 7  nm -1, which is only one quarter of the upper 
layer line spacing. 

3.3 Phase grating 
The scattered wave from a crystal of thickness H 

can be approximated by exp (ia~opH), the phase 
grating. This approximation gives the correct dynamic- 
al coupling between diffracted beams but represents 
the Ewald sphere as a plane and thus gives too great 
a weight to outer reflexions. In practice, its calculation 
takes as long as the multislice calculation. It is pos- 
sible, of  course, to calculate the phase grating as if it 
were a thin phase grating with large Az; however, this 
implies a very fine sampling interval, since q(x,y) will 
be a rapidly oscillating function in the unit cell. An- 
other method of calculating this approximation is to 
use the usual multislice recurrence relation with unit 
propagation, i.e. U,(h,k)= U,_a(h,k) . Q(h,k), where 
U.(h, k) is the wave output of the nth slice and Q(h, k) 
is the thin phase grating. In practice, this method takes 
as much calculation time as the multislice. Thus, the 
approximation is of interest only as a valid approxi- 
mation of the scattering process, but it is not as exact 
as the multislice calculation. 

3.4 Kinematic calculation 
If  the scattering from a finite parallel-sided slab of 

crystal is described by the first Born approximation, 
the central beam has unit intensity and all diffracted 
beams are equal to the respective Fourier coefficients 
of the projected potential multiplied by a phase factor 
of ~z/2 as well as a factor due to the shape transform 
of the crystal slab. To calculate the image, the scat- 
tered beams passing through the aperture are propa- 

gated and Fourier summed in the usual way. For 
thickness H, the scattered wave may be written as 

sin zc~(h,k) . H 
U(h,k)= iV(h,k) . H . 

zc((h,k) . H 
and 

U(0,0). H =  1. 

This approximation to imaging is that used by Zer- 
nicke (1942) in his description of the phase contrast 
method of imaging in the optical microscope. Thus, in 
the kinematic approximation, the central beam, U(0, 0), 
is constant for all thicknesses. The calculation time is 
extremely short because there is no convolution. It is 
a valid series approximation of the scattering function 
and, as it is a very fast calculation, it has been evaluated 
along with the other methods. 

3.5 Charge density 
In Paper I and Cowley & Moodie (1960), a very 

simple approximation to image contrast was given. 
This approximation stated that for a small defect of 
focus from a Fourier image plane the image contrast is 
given by 

I(x, y) = qq* [ 1 - - -  ecr22zc " V2~Oa(X'Y)] 

and 

~ p ( x , y )  OC V 2 ~ g p ( x , y )  , 

where q(x,y) is the wave transmitted through the objec- 
tive aperture as calculated by a thick phase grating ap- 

zc 
proximation,a = ~--~, 2 is the wavelength of electron 

beam, e = defect of focus and Op(x,y) is the projected total 
charge-density distribution in the unit cell, both elec- 
tronic and nuclear. The approximation is made that 
qq*= 1 for the aperture used and hence the image 
contrast becomes simply a matter of evaluating Op(x,y). 

From Poisson's equation it can be shown that 

0 p ( x , y )  oc V 2 ~ o p ( x , y ) = -  16;¢ 2 . H 

x ~ ~ exp {2rci(hx+ky)}. V(h,k).  S2(h,k), 
h k 

sin O(h, k) 
where S ( h , k ) -  2 , H is crystal thickness, 

Qp(x,y) is the projected charge density, V(h,k) is the 
structure amplitude, and O(h,k) the Bragg angle for 
the (h,k)th reflexion. This is a simple calculation, and 
quite fast, and if it is sufficiently accurate it allows 
naive interpretation of the images in terms of the 
projected charge density of the structure. 

Substitution of the expression for Qp into the equa- 
tion for image intensity shows that image intensity 
is linearly dependent on both defect of focus, e, and 
crystal thickness, H. Thus images calculated by this 
approximation are displayed as a function of the 
product ell. 

A C 28A - 5 
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4. Imaging 

Given the phases and amplitudes of the diffracted 
beams, the Fourier summation of these gives the inten- 
sity distribution for Gaussian focus. Inclusion of a 
propagation function of the standard form gives the 
image contrast for different defects of focus, each 
defect of focus being associated with a particular 
propagation value. Magnification is a simple multi- 
plicative factor and for convenience is usually chosen 
to be 1. Since we are dealing with a periodic object, 
absolute scale is of no interest. 

The propagation function for imaging is P(h,k)= 
exp {2hi. ~(h,k). e}, where e is the defect of focus in 
nm, defined as positive for overfocus, ((h, k) are excita- 
tion errors as defined in the multislice calculation and 
are, in fact, the means of defining the spherical wave 
front propagated from the focal plane. 

4rl Divergence 
Small variations of angle of incidence at zero defect 

of focus do not change the form of the imaging cal- 
culation and any change in the image observed can 
only be due to variation of wave amplitude and phases 
as a function of angle of incidence. For non-zero 
defect of focus, the principal effect is a lateral dis- 
placement of the image, which is proportional to the 
magnitude of the defect of focus and to the angle. For 
large defects of focus, this dominates any effect due 
to variations with angle of the scattered wave ampli- 
tudes and phases. Hence, the major effect (at large 
defects of focus) of a cone of angles of incidence, is to 
smear out the detail of any images observed. This 
occurs for a defect of focus greater than 200 nm for 
W4NbE6077 and a semi-angle of 6.4 x 10 -4 radian. In 
practice, for a real electron microscope, it is necessary 
to sum over angles of incidence corresponding to the 
cone of illumination at the specimen. 

4.2 Aberration effects 
Chromatic aberration 

The spread in electron energies in the illuminating 
beam causes, at first order, chromatic aberration. As 
shown by Hewat (1970), the effect of this on an image 
may be taken into account by adding together images 
over a small range of defects of focus (+ 10 nm in 2 nm 
steps). In practice, this would depend on the individual 
instrument's monochromation in the illumination 
system. 

Spherical aberration 
For a lens of known spherical aberration coefficient 

(Hewat, 1970), one may write in an effect of this spher- 
ical aberration on the propagation function for the 
aperture used and include this in the imaging program. 
The phase delay of a beam at angle e to the axis is 
2n 
42 C~e4' where C~ is the spherical aberration coefficient 

of the lens. 

This phase delay is incorporated into the propaga- 
tion function and may be represented as an effective 
difference in defect of focus for each beam. The effecl 
of spherical aberration is obviously heavily dependent 
on the size of aperture used in the calculation, i.e., the 
size of ~. 

4.3 Image display 
For display of calculated results of images, two 

methods were adopted. Firstly, graphs were plotted of 
intensity across the unit cell at a precision of 1/10th as a 
character graph printed by standard means on a line 
printer. Lateral definition was for 3 unit cells at 1/40th 
parts of a unit cell. 

The second and most useful display is by means of a 
half-tone printing routine (Head, 1967) which allows 
a photographic representation which gives 10 shades 
of grey from white to dark grey for direct comparison 
with experimental images. 

5. Results 

5.1 Results fi'om scattering calculations 
At the first level, we have results of scattering cal- 

culations in the form of scattered amplitudes and phases 
as a function of crystal thickness and angle of incidence. 
The most useful way of intercomparison of methods 
was by means of displays showing intensity of various 
refiexions as a function of crystal thickness at a fixed 
angle of incidence. For direct comparison with selected 
area diffraction patterns, intensities of diffracted beams 
were displayed by the half-tone output in disc patterns 
arranged in approximately the same way as in a dif- 
fraction pattern. These patterns from the full two- 
dimensional multislice calculation were very useful for 
determining the approximate crystal thickness from 
selected area diffraction patterns. Also, beam phase 
was graphed as a function of crystal thickness for 
various reflexions. This gave a measurement of the 
degree to which the calculation was non-kinematic. 

In Fig. 3(c) are shown curves from the two-dimen- 
sional multislice calculation. Although the orientation 
for these curves is the symmetric systematic orientation 
(i.e. 002 and 002 are equally excited), it can be seen 
that there is a marked difference in the curve for 002 
and 002 due to the non-systematic interactions; the 
strong sublattice reflexions lie at a small angle to the 
reciprocal lattice basis axes. Of course, as shown in 
Fig. 3(a), (f) ,  the systematic calculations, both f rom a 
two-dimensional phase grating and pure systematics, 
do not show this difference between symmetry-related 
pairs. 

The phase grating curves [Fig. 3(d)] show that this 
approximation appears to break down at 20 nm com- 
pared with systematics calculation. 

Some calculations were also made for a 105-beam 
array. As can be seen from Fig. 3(e), the absorption 
is quite high, due to the fact that the array is not large 
enough, with the result that the curves differ slightly 
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from those formed from the two-dimensional array of 
435 reflexions. 

The curves from the kinematic calculation as shown 
in Fig. 3(b) appear to give quite good agreement for 
thin crystals (approximately 5 nm). However, as can be 
seen in Fig. 4 the phases of the beams in the kinematic 
model are quite in error even for very thin crystals. 
Thus, it seems that the kinematic approximation is not 
satisfactory. 

For comparison with experiment, the disc pattern 
outputs shown in Fig. 5 were quite effective especially 
in regard to their off-systematic reflexion intensities and 
the relative weights of 007, 005 and 002 reflexions. The 
first-order reflexion is always weak in all experimental 
patterns and this could be reproduced by theoretical 
calculation only if non-ionized form factors were used 
in the structure factor calculations (Anstis, Lynch, 
Moodie & O'Keefe, 1972). The systematic orientations 
are defined by the sets of angles of incidence which 
equally excited 002 and 002. 

For the two-dimensional multislice calculations, the 
systematics orientation was obtained by tilting away 
from the zone axis while maintaining the equal excitation 
of 002, 002. Several angles ranging from 0.07 to 0.17 rad 
were tried to determine the effect of this change of tilt 
on the beam intensity versus crystal thickness plots. The 
range of angles was chosen on the basis of the diameter 
of the first Laue circle appearing in the experimental 
selected area diffraction pattern. No significant effect was 
observed. 

5.2 Results from image calculations 
In Fig. 6 are shown sets of calculated images for all 

the methods of calculation except the charge density 
approximation for a range of defects of focus at a 
fixed crystal thickness of 30 nm. Although other thick- 
nesses could be chosen, this value was selected for 
comparison with experimental images from a crystal 
of that thickness. Similarly, to match the experiment, 
11 beams were allowed through the aperture, although 
more or less could have been used. 

On the basis that the images from the two-dimen- 
sional multislice are the most exact, the amount by 
which the other images deviate from these is a measure 
of the error incurred by the approximation for that 
crystal thickness. For this particular structure, it would 
appear that any approximation to the most exact cal- 
culation gave detectable differences in image contrast. 
However, the effects on these images of the instrumen- 
tal parameters of chromatic aberration, spherical aber- 
ration and beam divergence had yet to be determined, 
as was the degree to which these instrumental effects 
would smear out detail. Also, in Fig. 7, images are 
shown as a function of thickness for the 435-reflexion 
two-dimensional multislice calculation. It can be seen 
that, for this structure, even for large changes in thick- 
ness, there is not much change in image profile. This 
coincides with experimental observations of images 
from wedge-shaped crystals. 

In Fig. 8, Column 5, is shown the effect, on a series 
of calculated images, of summing images from scat- 
tering calculations for 11 angles of incidence across the 
cone of convergence. The summation consisted of 
addition of intensities, and not phases and amplitudes, 
since the source can be regarded as incoherent and, in 
this respect, is exactly similar to diffraction in a con- 
vergent-beam diffraction camera (Cockayne, Goodman, 
Mills & Moodie, 1967). As can be seen, the effect of 
divergence is zero at zero defect &focus and is increased 
as the absolute value of defect of focus increases. In fact, 
quite a good approximation to the divergence can be 
made by taking the beam image for one angle of in- 
cidence and shifting and adding image intensities. The 
amount of the shift is linearly dependent on the magni- 
tude of the defect of focus. 

Chromatic aberration arises from two sources, 
thermal spread of energy of emission in the source and 
energy loss in the specimen. This may be represented 
by adding images over a range of defects of focus about 
a mean value. The amount of this depth of focus is 
dependent on an individual microscope and its opera- 
ting conditions. In this case, images were summed over 
+ 10 nm in 2 nm steps. In Fig. 8, Column 2, is shov)n 

the effect of this. Chromatic aberration due to energy 
loss in the specimen was not taken into account. The 
Figure shows that chromatic aberration has a very 
small effect on image profile. 

In Fig. 8, Columns 3 and 4 show images calculated 
with spherical aberration coefficients of 3 and 5.1 mm 
respectively. It can be seen that this has a great effect 
on the calculated images. It was also found to be 
strongly dependent on aperture size and had less effect 
for smaller apertures. 

All the above effects may be combined to give calcu- 
lated images suitable for comparison with experiment 
(Fig. 8, Column 6). As is shown in Paper I, good agree- 
ment can be obtained with experiment if the full two- 
dimensional multislice calculations are used as input 
for image calculations. 

In Fig. 9 is shown, for near focus, image calculations 
made from the full two-dimensional calculations for 
thin crystals compared with profiles of total projected 
charge density. These calculations were made for 11 
beams for crystals ranging in thickness from 5 to 40 nm. 
It can be seen that for 10 nm crystals and range of de- 
fect of focus of + 30 nm, the image intensity can be 
quite well represented by the product of defect of focus 
with projected charge density, and the calculated 
images show the reversal of contrast on passing through 
zero defect of focus. This simple approximation can 
be seen to break down for thicker crystals or larger 
defects of focus. 

6. Conclusions 

For very thin crystals, where the image contrast is seen 
to reverse on passing through zero defect of focus, 
then the simple projected charge density calculation is 
quite accurate for the limits of resolution of the ex- 

A C 2 8 A  - 5* 
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Fig .6 .  I m a g e  c o n t r a s t  d i sp layed  b o t h  graphica l ly  and  by ha l f - tone  display for  crystal  th ickness  o f  30 n m  for  defects  o f  focus  
r ang ing  f r o m  - 4 0 0  n m  at the top  o f  the display to + 4 0 0  n m  at the b o t t o m  in steps o f  I00 nm.  The  indiv idual  pictures  are three  
un i t  cells wide. The  images  are ca lcu la ted  for  eleven di f f rac ted beams  t h r o u g h  the object ive aper ture .  The  vert ical  c o l u m n s  are 
in turn  f rom left to r ight ,  435 reflexion two-d imens iona l  mult is l ice ca lcu la t ion ,  105 reflexion two-d imens iona l  mult is l ice calcula-  
t ion ,  sys temat ics  f rom a t w o - d i m e n s i o n a l  phase  grat ing,  one -d imens iona l  phase  gra t ing ,  sys temat ics  f r o m  a o n e - d i m e n s i o n a l  
phase  gra t ing ,  k inema t i c  ca lcu la t ion .  



D .  F .  L Y N C H  A N D  M .  A .  O ' K E E F E  545 

periment. Near zero defect of  focus, the contrast should 
be linearly dependent on magnitude of  defect of  focus. 
In other words, image features under these conditions 
can be naively interpreted as variation in charge density 

of  the object. It must be emphasized that we are talking 
here of the tutal charge density of  the material (elec- 
trons and nuclei) not just the electronic charge as is 
used in X-ray structure analysis. The range of  crystal 
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Fig.  7. I m a g e  c o n t r a s t  for  a r ange  o f  defects  o f  focus  r a n g i n g  f r o m  - 400 n m  at the top  o f  the display to + 400 n m  at the b o t t o m  
in steps o f  100 nm.  The  c o l u m n s  are arranged for crystal thicknesses r ang ing  f r o m  10 n m  to 60 n m  in steps o f  10 n m  f r o m  
lef t  to right. The calculations are from the 435 ref lexion t w o - d i m e n s i o n a l  multislice method. There is on ly  a smal l  va r i a t i on  in 
image contrast as a f u n c t i o n  o f  crys ta l  th ickness .  
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Fig. 8. Effect of  aberra t ions  on image contrast .  The images are ranged f rom top to b o t t o m  as a funct ion of  defect of  focus,  - 400 nm 
to + 4 0 0  nm in steps of  100 nm. C o l u m n  one is the unaber ra ted  images as calculated using 11 reflexions f rom a 435 reflexion 
two-dimensional  multislice calculation. Co lumn  two is the effect of  chromat ic  aberra t ion  by summat ion  of  images over a depth  
of  focus of  20 nm. Co lumn three is the effect of  incorpora t ing  a spherical aberra t ion  coefficient of  3.0 mm in the image. Co lumn  
four  is the effect of  a spherical aber ra t ion  coefficient of  5.1 mm. Co lumn  five is the effect of  beam divergence of  1.3 x 10 -3 radian.  
Co lumn  six is the effect of  the combina t ion  of  chromat ic  aberrat ion,  spherical aberra t ion  coefficient o f  5"1 mm, and beam di- 
vergence of  1.3 x 10-3 rad. 
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Fig. 9. Comparison of the charge density approximation with 435 reflexion, two-dimensional multislice calculation. The images 
are for 11 reflexions through the aperture. The charge-density calculation is column one on the left. Columns two to six are 
for crystal thicknesses 5, 10, 20, 30 and 40 nm. Zero defect of focus is 5 steps from the bottom. The ordinate of the display is 
chosen as the product defect of focus times crystal thickness since, in the charge-density approximation, image intensity is linearly dependent on both these quantities. 
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thicknesses for which this approximation will hold 
will be structure dependent, dependent on the micro- 
scope acceleration voltage and will become more ac- 
curate for higher voltages, although at higher voltages 
for the same contrast more defect of focus will be 
required. 

The type of approximation in scattering theory to be 
used is also going to vary with the structure being 
examined. Although in this structure, and for compara- 
tively thin crystals, large two-dimensional multislice 
calculations were used to obtain a good fit with experi- 
ment, this may not always be necessary. In fact, 
although the smaller two-dimensional multislice cal- 
culation and the systematic multislice calculation from 
a two-dimensional phase grating were quite poor with 
regard to calculation of diffracted beam intensity as a 
function of crystal thickness due to heavy weak-beam 
absorption, images calculated from both these methods 
are in reasonable agreement with experiment after the 
effects of the various aberrations are included. In 
similar structures even simpler methods may apply. In 
particular, calculations made on TiNb24062 show that 
the systematics multislice from a one-dimensional phase 
grating is adequate. 

The effect of instrument aberrations can be included 
in calculations in a systematic fashion and the principal 
effect is, as one might expect, that of averaging and 
blurring out of detail in the images. 

The authors are grateful to Mr A. F. Moodie for 
helpful discussion about the methods of calculation 

used, and to Dr J.V. Sanders and Mr J. Allpress for the 
experimental information used, also to Mr G. R. Anstis 
for development of some of the programs. 

One of us (M.A.O'K.) is grateful to the Division of 
Chemical Physics for permission to carry out this work 
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the figures. 
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The major effect of a freeze/thaw treatment on aqueous gels, sludges or slurries is a decrease in crystallite 
size either by compressive or shear stresses, built up as a consequence of the increase in volume during 
the water to ice phase transformation. This change in crystallite size together with the freezing potential 
developed, leads to a reduction or neutralization in the positive particle charges, which results in ac- 
celerated precipitation on thawing. 

Introduction 

Settling, sedimentation or filtration of precipitating 
solids, particularly if gelatinous, is a tedious, time- 
consuming laboratory chore and in industry can be a 
major problem, particularly in the case of water treat- 
ment. Here the disposal of the by-product, (a sludge 
containing variable quantities of miscellaneous solids 

and water, according to the district and type of water 
treatment employed), can account for more than half 
the total treatment cost (Swanwick & Davidson, 1961). 
In addition valuable land must be used for settling 
lagoons, to limit bulk handling of drained material. 

Any change in the handling of precipitating solids, 
therefore, leading to substantial savings in time or cost, 
would be of enormous benefit. Such a change was 


